Article

On the Synthesis of Protopine Alkaloids

Yasuhiro Wada, Harumi Kaga,[†] Shiho Uchiito, Eri Kumazawa, Miho Tomiki, Yu Onozaki, Nobuhito Kurono,[‡] Masao Tokuda, Takeshi Ohkuma,[‡] and Kazuhiko Orito*

Laboratory of Organic Synthesis, Division of Molecular Chemistry, School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, and National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan

orito@org-mc.eng.hokudai.ac

Received May 24, 2007

For the synthesis of protopine alkaloids, we studied a reaction sequence based on a ring enlargement of indeno[2,1-*a*][3]benzazepines by a singlet oxygen oxygenation, followed by conversion of an amide carbonyl group of the resultant 10-membered keto-lactam to a methylene group, which is the last step for completion of the synthesis. The key substances, indeno[2,1-*a*][3]benzazepines, were prepared by Bischler–Napieralski cyclization of alkoxy-substituted 1-(2-bromobenzyl)-3-benzazepin-2-ones. Steric effects of the substituents in this synthesis were examined.

Introduction

Protopine and related alkaloids, which have the unique structural feature of a nitrogen-containing 10-membered cyclic ketone (dibenzazocine ring), are widely distributed in the families Berberidaceae, Fumariaceae, Papaveraceae, Ranunculaceae, and Rutaceae¹ and have been reviewed as a group of isoquinoline alkaloids.² The major protopine alkaloids (1) have four alkoxyl groups at the 2, 3, 9, and 10 positions. The 1-, 11-, or 12-alkoxyl group has been found in the minor components.^{1d} It was shown in 1978–1981 that allocryptopine and protopine exhibited an antiarrhythmic effect³ and that protopine has antibacterial⁴ and antianalgesic⁵ activities. More recently, other notable pharmacological properties of the alkaloids, including activities for inhibition of rabbit blood platelet aggregation⁶ and calcium influx through both voltage-and receptor-operated calcium channels,⁷ anti-cholinergic,⁸ antihistaminic,⁸ anti-thrombotic,^{6b,9} anti-inflammatory,⁹ and anti-hemeostatic activities,^{6b} as well as activities against hepatotoxicity induced by actoaminophen and CCl_4 ,¹⁰ have been found.

1a, muramine $R^{1}=R^{2}=R^{3}=R^{4}=OMe$ **1b**, cryptopine $R^{1}=R^{2}=OMe$, $R^{3}+R^{4}=OCH_{2}O$ **1c**, allocryptopine $R^{1}+R^{2}=OCH_{2}O$, $R^{3}=R^{4}=OMe$ **1d**, protopine $R^{1}+R^{2}=R^{3}+R^{4}=OCH_{2}O$

Synthesis of protopine alkaloids has been achieved by the transformation of protoberberine alkaloids based on a ring-

[†] AIST.

[‡] Present address: Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.

^{(1) (}a) Kametani, T. *The Chemistry of the Isoquinoline Alkaloids*; Hirokawa: Tokyo, and Elsevier: Amsterdam, 1968. (b) Kametani, T. *The Chemistry of the Isoquinoline Alkaloids Vol. 2*; The Sendai Institute of Heterocyclic Chemistry: Japan, 1974. A recent report for the minor alkaloids, see: (c) Chang, Y. C. *Planta Med.* **2003**, *69*, 148–152.

^{(2) (}a) Shamma, M. *The Isoquinoline Alkaloids*; Academic Press, Inc.: New York, 1972; pp 344–358. (b) Onda, M.; Takahashi, H. *The Alkaloids*; Brossi, A., Ed.; Academic Press, Inc.: San Diego, 1988; Vol. 2, pp 181–209.

^{(3) (}a) Akbarov, Z. S.; Aliev, K. U.; Sultanov, M. B. Farmakol. Prir. Veschestv **1978**, 11–29. (b) Burtsev, V. N.; Dormidontov, E. N.; Salyaev, V. N. Kardiologiiya **1978**, 18, 76–79. (c) Burtsev, V. N.; Dormidontov, E. N.; Saliaev, V. N. Kardiologiia **1978**, 18, 76–79. (d) Lu, Z. A.; Wan, D. C.; Chen, Z. H.; Wang, X. H. Chin. Pharm. J. **1992**, 30, 81–84. (e) Zipes, D. P. Heart Disease, 5th ed.; W. B. Saunders: Philadelphia, 1997; pp 593–639. (f) Song, L.-S.; Ren, G.-J.; Chen, Z.-L.: Chen, Z.-H.; Zhou, Z.-N.; Chen, H. Br. J. Pharmacol. **2000**, 129, 893–900.

⁽⁴⁾ Casar, G.; Bilgehan, H.; Gözler, T. Microbiol. Bull. 1981, 15, 105–109.

opening reaction by Hofmann degradation of their N-methochlorides (Perkin's method)¹¹ leading to the formation of muramine (1a), allocryptopine (1c), and protopine (1d), K₂CrO₄ oxidation of the *N*-oxide (Bentley's method)¹² to 1a,b,c, photooxidation of tetrahydroberberine methiodide (Hanaoka's method)¹³ to 1c, or von Brown reaction to 1a (Rönsch's method).¹⁴ Brossi reported another transformation of phthalideisoquinoline alkaloids, β -hydrastine and α -narcotine, via Perkin-type Hofmann degradation of the derived isoindolo[1,2b][3]benzazepine methiodides to **1c**.¹⁵ 13-Oxoprotopine or 13oxoallocryptopine has been prepared by oxidative methods with air or Hg(OAc)₂.^{16–18} Pseudoallocryptopine and pseudoprotopine have also been prepared from the corresponding tetrahydroprotoberberine N-metho salts.^{11d,g} Biotransformation of N-metho salts of tetrahydroprotoberberine alkaloids to protopine, 13oxoallocryptopine, or 13-methylallocryptopine by Corydarlis species callus cultures has been achieved by Tani¹⁹ and Takao.²⁰ We developed a ring-enlargement reaction based on ¹O₂ oxygenation of indeno[2,1-a][3]benzazepines 2 followed by further elaboration of the resultant 10-membered keto-lactams, which successfully produced pseudo-type protopines 3 (Scheme 1).²¹ We herein describe an application of the method to the synthesis of the above-mentioned representative protopine alkaloids muramine (1a) and protopine (1d).

(5) Yue, K.-L. Acta Pharmacol. Sin. 1981, 2, 16-18.

(6) (a) Ko, F. N.; Wu, T. N.; Lu, S. T.; Wu, Y. C.; Huang, T. F.; Teng, C. M. *Thromb. Res.* **1989**, *56*, 289–298. (b) Shiomoto, H.; Matsuda, H.; Kubo, M. *Chem. Pharm. Bull.* **1990**, *38*, 2320–2322; *Chem. Pharm. Bull.* **1991**, *39*, 474–477. (c) Teng, C. M.; Ko, F. N.; Wang, J. P.; Liu, C. N.; Wu, T. S; Chan, C. C.; Huang, T. F. J. Pharm. Pharmacol. **1991**, *43*, 667–669. (d) Shen, Z. Q.; Chen, Z. H.; Duan, L. Acta Pharm. Sinica **1999**, *20*, 338–340.

(7) (a) Ko, F. N.; Wu, T. N.; Lu, S. T.; Wu, Y. C.; Huang, T. F.; Teng, C. M. *Jpn. J. Pharmacol.* **1992**, *58*, 1–9. (b) Grantham, C. J.; Cannell, M. B. *Circ. Res.* **1996**, *79*, 184–200.

(8) Üstünes, L.; Laekeman, G. M.; Gözler, T.; Vlietinck, A. J.; Özer, A.; Herman, A. G. J. Nat. Prod. **1988**, 51, 1021–1022.

(9) Saeed, S. A.; Gilani, A. H.; Majoo, R. A.; Shah, B. H. *Pharmacol. Res.* **1997**, *36*, 1–7.

(10) (a) Montilla, M. P.; Cabo, J.; Navarro, M. C.; Risco, S.; Jimenez, R. S.; Aneiros, J. *Phytother. Res.* **1990**, *4*, 212–215. (b) Gilani, A. H.; Janbaz, K. H. *Gen. Pharmacol.* **1995**, *26*, 309–315, 619–623. (c) Gilani, A. H.; Janbaz, K. H.; Shah, B. H. *Pharmacol. Res.* **1998**, *37*, 31–35. (e) Janbaz, K. H.; Saeed, S. A.; Gilani, A. H. *Pharmacol. Res.* **1998**, *38*, 215–219.

(11) (a) Haworth, R. D.; Perkin, W. H., Jr. J. Chem. Soc. 1926, 445, 1769–1784. (b) Haworth, R. D.; Koepfli, J. B.; Perkin, W. H., Jr. J. Chem. Soc. 1927, 2261–2265. (c) Russell, P. B. J. Am. Chem. Soc. 1956, 78, 3115–3121. (d) Giacopello, D.; Deulofeu, V.; Comin, J. Tetrahedron 1964, 20, 2971–2975. (e) Giacopello, D.; Deulofeu, V. Tetrahedron 1967, 23, 3265–3269. (g) Sotelo, R. M.; Giacopello, D. Aust. J. Chem. 1972, 25, 385–392. (h) Kurlkarni, B. K.; Dhar, R. K.; de Souza, N. J. J. Heterocycl. Chem. 1990, 27, 623–626.

(12) Bentley, K. W.; Murray, A. W. J. Chem. Soc. 1963, 2497–2501.
(13) Hanaoka, M.; Mukai, C.; Arata, Y. Heterocycles 1976, 4, 1685–1686.

(14) Rönsch, H. Z. Chem. 1987, 27, 64-65.

(15) (a) Teitel, S.; Borgese, J.; Brossi, A. *Helv. Chim. Acta* **1973**, *56*, 553–557. (b) Vesely, Z.; Holubek, J.; Kopecká, H.; Trojánek, J. Collect. Czech. Chem. Commun. **1975**, *40*, 1403–1410.

(16) Leonard, N. J.; Sauers, R. R. J. Org. Chem. 1957, 22, 63-65.

(17) Nalliah, B.; Manske, R. H. F.; Rodrigo, R. Tetrahedron Lett. 1974, 19, 1765–1768.

(18) Castedo, L.; Peralta, A.; Puga, A.; Saa, J. M.; Suau, R. *Heterocycles* **1986**, *24*, 5–7.

(19) Tani, C.; Kiyoshi, T. Chem. Pharm. Bull. 1974, 22, 2457–2459.
(20) (a) Takao, N.; Iwasa, K.; Kamiguchi, M.; Makiko, S. Chem. Pharm. Bull. 1976, 24, 2859–2968. (b) Takao, N.; Kamiguchi, M.; Okada, M. Helv. Chim. Acta 1983, 66, 473–484. (c) Iwasa, K.; Tomii, A.; Takao, N. Heterocycles 1984, 22, 33–38. (d) Iwasa, K.; Tomii, A.; Takao, N.; Ishida, T.; Inoue, M. J. Chem. Res., Synop. 1985, 1, 16–17. SCHEME 1. Ring Enlargement Based on ¹O₂ Oxygenation

Results and Discussion

The method requires an indeno[2,1-*a*][3]benzazepine with alkoxyl groups at its 2-, 3-, 8-, and 9-positions, such as **4**. First, radical cyclization of 1-(2-bromobenzyl)-4,5-dihydrobenzazepine **8** to **4d** was tested under the reaction conditions used for a 5-endo cyclization of 1-(2-bromobenzyl)-3,4-dihydroiso-quinolines to dibenz[*b*,*d*]indolizidines.²²

As shown in Scheme 2, 3-benzazepin-2-one $5b^{23}$ was treated with benzyl chloride 6^{24} (1.1 equiv) in the presence of NaH (2 equiv) in a boiling 10:1 THF–DMF mixture for 5 h to give 2-benzyl-3-benzazepine 7 in 64% yield. This was converted by DIBALH reduction to 8 (53%), which was subjected to radical cyclization with AIBN and Bu₃SnH in boiling benzene, toluene, or *o*-xylene. However, none of the desired 4d was obtained, but 9 was formed at 160 °C in 50% isolated yield. The structure of 9 was determined by the fact that a radical coupling of 7 followed by DIBALH reduction of the product 10 also gave 9 and the fact that irradiation of the *N*-Me group of 9 resulted in significant NOE on C-7 hydrogen, as depicted in Scheme 2. Attempts to obtain 4d through Heck cyclization of 8 were unsuccessful.

It has been reported that 3-(2-bromophenyl)propanoic acid **11** was cyclized in PPA to an indanone **12** in 72–75% yield (Scheme 3).²⁵ The corresponding propanoic acid derivative **15** was prepared by a modification of the method reported by $us^{21c,26}$ that involves condensation of the corresponding benzonitrile with benzaldehyde followed by reduction of a double bond of **13** with NaBH₄-pyridine²⁷ and hydrolysis of the CN group of **14**, and it was subjected to cyclization using PPA at 80 °C for 1 h to afford 1-indanone **16** in 12% yield. Its transformation to 11-bromoindeno[2,1-*a*][3]benzazepine **17a**, which is equivalent to **4a**, by hydrolysis under basic conditions²⁴ as well as acidic conditions,²⁸ failed. In addition, treatment of propionitrile **14** with BuLi did not produce any indanones. Thus, the attempt to establish a route via 1-indanone^{21c} was abandoned.

(21) (a) Orito, K.; Itoh, M. J. Chem. Soc., Chem. Commun. **1978**, 813–814. (b) Orito, K.; Kudoh, S.; Yamada, K.; Itoh, M. Heterocycles **1980**, 14, 11–14. (c) Orito, K.; Kurokawa, Y.; Itoh, M. Tetrahedron **1980**, 36, 617–621.

(22) Orito, K.; Uchiito, S.; Satoh, Y.; Tatsuzawa, T.; Harada, R.; Tokuda, M. Org. Lett. **2000**, 2, 307–310.

(23) Orito, K.; Miyazawa, M.; Kanbayashi, R.; Tokuda, M.; Suginome, H. J. Org. Chem. 1999, 64, 6583–6596.

(24) Orito, K.; Kaga, H.; Itoh, M.; de Silva, O. S.; Manske, R. H.; Rodrigo, R. J. Heterocycl. Chem. **1980**, 417–423.

(25) (a) Cushman, M.; Dekow, F. W. *Tetrahedron* 1978, *34*, 1435–1439.
(b) de Silva, S. O.; Ahmad, I.; Snieckus, V. *Can. J. Chem.* 1979, *57*, 1598–1605.

(26) Orito, K.; Manske, R. H.; Rodrigo, R. J. Am. Chem. Soc. 1974, 96, 1944–1945.

(27) Rhodes, R. A.; Boykin, D. W. Synth. Commun. 1988, 18, 681-687.

(28) Bonwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.; Hockless, D. C. R.; Homan, J. W.; Read, R. W.; Wu, A. W. *J. Chem. Soc., Chem. Commun.* **1995**, 2551–2553.

SCHEME 3.

JOC Article

SCHEME 2. Attempt To Prepare 4d

We have reported that a standard Bischler–Napieralski cyclization proceeded well to give indeno[2,1-a][3]benzazepines **2** in good yields.²⁴ Similar treatment of **19a,d**, which were

prepared from 3-benzazepin-2-ones and benzyl chlorides (**5a** and **18a**, or **5b** and **18b**), with POCl₃ or P_2O_5 in boiling toluene, did not induce their cyclization. Banwell's modification using

Bı **17a**

SCHEME 4. Synthesis of Protopine (1d) and Muramine (1a)

Tf₂O together with 4-DMAP²⁸ did not work. Wang's modification (P₂O₅ in boiling POCl₃)²⁹ consumed **19a,d** after 2 h to give the desired **17a,d** together with the respective debromo isomers **2a,d**^{21b} in a 2:3 ratio. Separation by column chromatography on alumina gave pure **17a,d**, but only in 27% and 26% yields (Scheme 4).

Nevertheless, the photo-oxygenation (${}^{1}O_{2}$ with Rose Bengal in MeOH-CH₂Cl₂) of the formed indenoazepines 17a,d was tested and found to proceed smoothly to give 12-bromo-8oxomuramine, 20a, and 12-bromo-8-oxoprotopine, 20d, both quantitatively. The latter, methylenedioxy-substituted lactam, was quantitatively converted by treatment with LiAlH₄ (10 mol equiv) in boiling THF for 15 h to dihydroprotopine³⁰ (21d), PCC oxidation of which afforded protopine³¹ (1d) in 78% yield. In contrast, treatment of the former, 9,10-dimethoxy-substituted lactam (20a), with LiAlH₄ (10 mol equiv) in boiling THF for 4 h gave no muraminol (21a), but gave 8-oxomuraminol (22) in 60% yield. Longer treatment in boiling DME (20 h) afforded muraminol¹⁴ (21a) together with 9-hydroxymuraminol (23). These results may be accounted for by the steric hindrance caused with N-Me and vicinal dimethoxy groups rather than electronic reasons.³² PCC oxidation of 21a produced muramine¹⁴ (1a) in a good yield similar to that of protopine (1d), although a larger amount of muraminol was not obtained by either reduction of 8-oxomuraminol (22) with BH₃·THF or methylation of a phenolic OH of 23 with Me₂SO₄-KOH or Na₂CO₃.

Thus, it was found that protopine (1d) was readily synthesized in a reaction sequence involving a ring-enlargement of bromide 17d (an equivalent for indeno[2,1-*a*][3]benzazepine 4d) by a singlet oxygen oxygenation, but a more efficient method is necessary for reduction of a sterically hindered amide group with a 7,8-dimethoxy group to a methylene group. A 7,8methylenedioxyindeno[2,1-*a*][3]benzazepine, bulgaramine (4b), was recently found in nature,³³ and its short-step synthesis via cyclopentannulation of Fisher aminocarbene complexes was reported by Moser's group.³⁴ This will be a solution to a practical method for preparation of indeno[2,1-*a*][3]benzazepines.

Experimental Section

1-[2-Bromo-4,5-(methylenedioxy)benzyl]-7,8-(methylenedioxy)-3-methyl-1,2,4,5-tetrahydro-3*H*-3-benzazepin-2-one (19d). To a stirred suspension of **5b**, mp 170–171 °C (EtOH) (lit.²³ mp 167– 168 °C) (3.29 g, 15.0 mmol), and NaH (0.72 g, 30.0 mmol) in dry DMF and THF (1:10 volume %, 80 mL) under N₂ was added 2-bromo-4,5-methylenedioxybenzyl chloride [18b, 4.12 g, 16.5 mmol, freshly prepared from the corresponding 2-bromobenzyl alcohol with SOCl₂, mp 62–63 °C (petroleum ether) (lit.³⁵ mp 64– 65 °C)]. The mixture was heated at 80 °C in an oil bath for 5 h, poured into water (300 mL), and extracted with CH₂Cl₂ (3 × 100 mL). The combined extracts were washed with water (5 × 100

⁽²⁹⁾ Wang, X. M.; Tan, J.; Grozinger, K. Tetrahedron Lett. 1998, 39, 6609–6612.

⁽³⁰⁾ Valpuesta, M.; Diaz, A.; Torres, G.; Suau, R. *Tetrahedron* **2002**, *58*, 5053–5059.

⁽³¹⁾ Kametani, T.; Ihara, M.; Honda, T. J. Chem. Soc. C 1970, 1060–1064.

⁽³²⁾ Sha, C.-K.; young, J.-J.; Yeh, C.-P.; Chang, S.-C.; Wang, S.-L. J. Org. Chem. **1991**, 56, 2694–2696.

⁽³³⁾ Yakimov, G.; Mollov, N.; Left, J. E.; Guinaudeau, H.; Freyer, A. J.; Shamma, M. *J. Nat. Prod.* **1984**, *47*, 1048–1049. For the synthesis by transformation of a spirobenzylisoquinoline alkaloid, fumaricine, see: Blascó, G. *Acta Chim. Hung.* **1991**, *128*, 819–822.

⁽³⁴⁾ Giese, M. W.; Moser, W. H. J. Org. Chem. 2005, 70, 6222–6229.
(35) Naik, R. G.; Wheeler, T. S. J. Chem. Soc. 1938, 1780–1783.

mL), dried (Na₂SO₄), and concentrated. The residue was crystallized from CH₂Cl₂–EtOH to give **19d**, mp 218–219 °C (CH₂Cl₂– EtOH), as colorless crystals (4.94 g, 76%): IR (Nujol) 1627 cm⁻¹; ¹H NMR δ 2.90 (s, 3H), 2.93–3.04 (m, 1H), 3.16 (dd, J = 4.3, 13.5 Hz, 1H), 3.21–3.41 (m, 2H), 3.53 (dd, J = 9.6, 13.5 Hz, 1H), 3.84–3.94 (m, 1H), 4.43 (dd, J = 4.3, 9.6 Hz, 1H) 5.91, 5.92 (each s, each 1H), 5.93 (s, 2H), 6.62, 6.74, 6.97, 6.99 (each s, each 1H); EI-MS *m*/*z* (relative intensity) 433 (M⁺, 0.40), 431 (M⁺, 0.34), 352 [(M – Br)⁺, 100], 215 (17), 213 (18), 190 (71). Anal. Calcd for C₂₀H₁₈BrO₅N: C, 55.57; H, 4.20; Br, 18.48; N, 3.24. Found: C, 55.37; H, 4.31; Br, 18.72; N, 3.28.

11-Bromo-2,3,8,9-bis(methylenedioxy)-5,6,7,12-tetrahydroindeno[2,1-a][3]benzazepine (17d). To a stirred solution of 3-benzazepin-2-one 19d (2.17 g, 5.0 mmol) in POCl₃ (7.5 mL) was added P₂O₅ (1.70 g, 12 mmol). The mixture was refluxed for 2 h, cooled, basified with a 2 N NaOH solution (100 mL) containing ice (15 g), and extracted with CH_2Cl_2 (3 × 50 mL). The combined extracts were washed with a 2 N NaOH solution (50 mL) and water (50 mL) and dried (Na₂SO₄). The solvent was evaporated to give a 3:2 mixture of 17d and 2d (1.83 g), which was subjected to column chromatography with Al₂O₃ using 20% hexane-CH₂Cl₂ as eluent to give 17d, mp 255-257 °C (CH₂Cl₂-EtOH), as pale yellow crystals [560 mg, 27%, Rf 0.85 (5% MeOH-CH2Cl2)]: IR (Nujol) 1623, 1558 cm⁻¹; ¹H NMR δ 2.89 (s, 3H), 2.95 (distorted t, J =4.3 Hz, 2H), 3.20 (distorted t, J = 4.3 Hz, 2H), 3.69 (s, 2H), 5.96, 6.05 (each s, each 2H), 6.69, 6.87, 7.08 (each s, each 1H); EI-MS m/z (relative intensity) 415 (M⁺, 99), 413 (M⁺, 100), 400 (41), 398 (42), 372 (17), 370 (18), 334 (20), 261 (25). Anal. Calcd for C₂₀H₁₆BrNO₄: C, 57.99; H, 3.89; Br, 19.29; N, 3.38. Found: C, 58.03; H, 3.96; Br, 19.12; N, 3.36. A less mobile fraction with R_f 0.7 gave 2d, mp 150-151 °C (95% EtOH) (lit.^{21b} 150-151 °C), as colorless crystals (200 mg, 12%).

12-Bromo-5,6,7,8,13,14-hexahydro-7-methyl-2,3,9,10-bis(methylenedioxy)dibenz[c,g]azecine-8,14-dione (20d). A solution of 17d (560 mg, 1.35 mmol) and Rose Bengal (11 mg) in MeOH (150 mL) and CH₂Cl₂ (90 mL), contained in a Pyrex test tube (diameter; 40 mm \times length; 360 mm) equipped with a sintered glass bubbler, was cooled with a stream of cold water from the side of the test tube. O2 gas was introduced through the bubbler, and the mixture was irradiated with a 500 W tungsten lamp at 18 °C for 20 min. The solvents were evaporated, and the residue was dissolved in CH_2Cl_2 (30 mL), washed with water (5 × 30 mL), and dried over Na₂SO₄. The solvent was evaporated to give a residue (796 mg), which was purified by preparative TLC with silica gel developed with 3% MeOH-CH₂Cl₂. A main band with R_f 0.5 gave **20d**, mp >200 °C dec (EtOAc), as colorless crystals (596 mg, 99%): IR (Nujol) 1683, 1644, 1627, 1616 cm⁻¹; ¹H NMR two rotamers (1: 2.4) δ 2.63-2.79 (m, 1H), 2.71, 2.97 (two s, 3H, 1:2.4), 3.37-3.44 (m, 3H), 4.00, 4.32 (two d, J = 15.8 Hz, 1H, 2.4:1), 4.46, 4.55 (two d, J = 15.8 Hz, 1H, 1:2.4), 5.92–6.05 (m, 4H), 6.50, 6.70 (two s, 1H, 2.4:1), 6.96 (s, 1H), 7.05, 7.07 (two s, 1H, 2.4:1); EI-MS m/z (relative intensity) 447 (M⁺, 11), 445 (M⁺, 12), 404 $[(M - Ac)^+, 10], 402 [(M - Ac)^+, 13], 242 (98), 240 (100), 214$ (44), 212 (45). Anal. Calcd for C₂₀H₁₆BrNO₆: C, 53.83; H, 3.61; Br, 17.91; N, 3.14. Found: C, 53.87; H, 3.60; Br, 17.83; N, 3.13.

Dihydroprotopine (21d). To a stirred mixture of LiAlH₄ (200 mg, 5.27 mmol) in dry THF (10 mL) at rt was added dropwise a solution of **22d** (224 m0, 0.5 mmol) in dry THF (15 mL). After the mixture was refluxed for 15 h, water (1 mL), a 2 N NaOH solution (2 mL), and water (3 mL) were added dropwise to quench LiAlH₄. The resulting mixture was filtered, and the filtrate was evaporated. The residue was dissolved in CH₂Cl₂ (30 mL), washed with water (30 mL) containing Rochelle salt (3 g), water (30 mL), and brine (30 mL) and dried (Na₂SO₄). The CH₂Cl₂ layer was concentrated to give a residue (223 mg) which was purified by preparative TLC with silica gel developed with 5% MeOH–CH₂-Cl₂. A main band with R_f 0.4–0.8) gave **21d**, mp 149–151 °C (Et₂O–hexane) (lit.³⁰ mp 147–148 °C), as colorless crystals (177

mg, 99%), whose spectral data were identical with those previously reported.³⁰

Protopine 1d. A mixture of dihydroprotopine (**21d**) (71 mg, 0.2 mmol), PCC (89 mg, 0.4 mmol), and NaOAc (8 mg, 0.1 mmol) in CH₂Cl₂ (10 mL) was stirred at rt for 2 h. A 1 N HCl solution (3 mL) and EtOH (1 mL) were added dropwise, and the mixture was stirred at rt for 15 min, basified by addition of a diluted NH₄OH solution, and extracted with CH₂Cl₂ (3 × 10 mL) after addition of Rochelle salt (2 g). The organic layers were washed with water (3 × 10 mL), dried (Na₂SO₄), and concentrated. The residue was purified by preparative TLC with alumina developed with 1% MeOH–CH₂Cl₂. A main band with R_f 0.4–0.8 gave protopine (**1d**), mp 205–206 °C (MeOH) [lit.³¹ mp 207–208 °C], as colorless crystals (55 mg, 78%), whose spectral data were identical with those previously reported.³¹

1-(2-Bromo-4,5-dimethoxybenzyl)-7,8-dimethoxy-3-methyl-1,2,4,5-tetrahydro-3H-3-benzazepin-2-one (19a). Similarly, **5a**, mp 138–140 °C (EtOH) (lit.²³ 137–138 °C) (2.36 g, 10.0 mmol), NaH (0.48 g, 20.0 mmol), and 2-bromo-4,5-dimethoxybenzyl chloride [**18a**, 2.79 g, 10.5 mmol], mp 63–65 °C (Et₂O–hexane) (lit.³⁶ mp 60–61 °C), gave a residue (5.02 g), which was crystallized from CH₂Cl₂–EtOH to give **19a**, mp 183–185 °C (CH₂Cl₂–EtOH), as colorless crystals (3.40 g, 73%): IR (Nujol) 1639 cm⁻¹; ¹H NMR δ 2.95 (s, 3H), 3.01–3.58 (m, 5H), 3.79, 3.84, 3.84, 3.85 (each s, each 3H), 3.79–3.95 (m, 1H), 4.44 (dd, *J* = 3.6, 5.6 Hz, 1H), 6.59, 6.61, 6.97, 7.00 (each s, each 1H); EI-MS *m/z* (relative intensity) 465 (M⁺, 0.9), 463 (M⁺, 1.0), 384 [(MH – Br)⁺, 94], 229 (32), 206 (100). Anal. Calcd for C₂₂H₂₆BrNO₅: C, 56.90; H, 5.64; Br, 17.21; N, 3.02. Found: C, 57.03; H, 5.63; Br, 17.06; N, 3.05.

11-Bromo-2,3,8,9-tetramethoxy-5,6,7,12-tetrahydroindeno-[2,1-a][3]benzazepine (17a). 3-Benzazepin-2-one (19a, 0.93 g, 2.0 mmol) was treated with P2O5 (0.60 g, 4.2 mmol) in boiling POCl3 (3 mL) for 2 h. The crude product (0.82 g, a 3:2 mixture of 17a and 2a) was subjected to column chromatography with alumina using 30% hexane-CH₂Cl₂ as eluent to give 17a, mp 169.5-171.5 °C (EtOH), as pale yellow crystals [230 mg, 26%, Rf 0.85 (5% MeOH-CH₂Cl₂)]: IR (Nujol) 1601, 1583, 1572, 1552 cm⁻¹; ¹H NMR δ 3.04 (s, 3H), 3.02 (distorted t, J = 4.3 Hz, 2 H), 3.18 (distorted t, J = 4.3 Hz, 2 H), 3.69 (s, 2H), 3.86, 3.89, 3.91, 3.97 (each s, each 3H), 6.73, 6.92, 7.09 (each s, each 1H); EI-MS m/z (relative intensity) 447 (M⁺, 99.9), 445 (M⁺, 100), 432 [(M - $(CH_3)^+$, 47.0], 430 [(M - CH₃)⁺, 47.2], 389 (10.0), 387 (11.0). Anal. Calcd for C₂₂H₂₄BrNO₄: C, 59.20; H, 5.42; Br, 17.90; N, 3.14. Found: C, 59.14; H, 5.27; Br, 17.86; N, 3.16. A less mobile fraction with R_f 0.65 gave 2a, mp 182-183 °C (EtOH) (lit.^{21b} mp 182-183 °C), as colorless crystals (110 mg, 15%).

12-Bromo-7-methyl-2,3,9,10-tetramethoxy-5,6,7,8,13,14-hexahydrodibenz[c,g]azecine-8,14-dione (20a). A mixture of 17a (280 mg, 0.63 mmol) and Rose Bengal (6 mg) in MeOH (70 mL) and CH₂Cl₂ (10 mL) was oxygenated at 18 °C for 15 min. The residue (327 mg) was subjected to column chromatography on silica gel (3% MeOH-CH₂Cl₃) to afford **20a** [297 mg, 99%, R_f 0.2-0.4 (3% MeOH-CH₂Cl₂)], as a mixture of two rotamers (5:1): IR (Nujol) 1687, 1630 cm⁻¹; ¹H NMR δ 2.43–2.46, 2.79–2.93 (two m, 1H, 5:1), 2.63, 3.02 (two s, 3H, 1:5), 3.31-3.47 (m, 3H), 3.76, 3.80, 3.81, 3.88, 3.91, 3.93, 3.97 (seven s, 12H, 5:5:6:1:1:1:5), 3.97, 4.34 (two d, J = 15.8 Hz, 1H, 5:1), 4.48, 4.58 (two d, J = 15.8 Hz, 1H,5:1), 6.43, 6.70 (two s, 1H, 5:1), 6.96 (s, 1H), 7.06, 7.13 (two s, 1H, 5:1); EI-MS m/z (relative intensity) 479 (M⁺, 6.1), 477 (M⁺, 6.1), 436 $[(M - Ac)^+, 9.3]$, 434 $[(M - Ac)^+, 9.5]$, 258 (98.5), 256 (100). Anal. Calcd for C₂₂H₂₄BrNO₆: C, 55.24; H, 5.06; Br, 16.70; N, 2.93. Found: C, 55.11; H, 5.07; Br, 16.51; N, 2.76. Recrystallization from EtOAc-hexane gave a main rotamer, mp 175-176 °C (EtOAc-hexane), as colorless crystals (234 mg, 78%).

7-Methyl-2,3,9,10-tetramethoxy-5,6,7,8,13,14-hexahydrodibenz[*c*,*g*]**azecin-8-on-14-ol** (22). To a stirred mixture of LiAlH₄

⁽³⁶⁾ Olivera, R.; SanMartin, R.; Dominguez, E.; Solans, X.; Urtiaga, M. K.; Arriortua, M. I. *J. Org. Chem.* **2000**, *65*, 6398–6411.

(36 mg, 0.92 mmol) in dry THF (2.7 mL) at rt was added dropwise a solution of 20a (44 mg, 0.09 mmol) in dry THF (2 mL). After the mixture was refluxed for 4 h, water (4 mL) was added to quench LiAlH₄. The resulting mixture was filtered, and the filtrate was concentrated. The residue was dissolved in CH₂Cl₂ (20 mL), washed with water (20 mL) containing Rochelle salt (2 g), water (20 mL), and brine (20 mL), and dried (Na₂SO₄). Evaporation of the solvent and purification of the residue (42 mg) by preparative TLC with silica gel developed with 7% MeOH-CH₂Cl₂ afforded 22, mp 203-205 °C (EtOAc-hexane), as colorless crystals (21.8 mg, 60%, R_f 0.4–0.5): IR (Nujol) 3448, 1624 cm⁻¹; ¹H NMR δ 2.01 (d, J = 2.6 Hz, 1H), 2.51 (dd, J = 7.9 Hz), 2.75 (dd, J = 10.6 Hz), 3.00 (dd, J = 7.9 Hz, 1H), 3.17 - 3.26 (m, 1H), 3.23 (s, 3H), 3.41 (dd, J)J = 7.9 Hz, 1H), 3.68–3.76 (m, 1H), 3.73, 3.75, 3.76, 3.92 (each s, each 3H), 5.13–5.19 (m, 1H), 6.26 (s, 1H), 6.45, 6.51 (AB type, J = 8.3 Hz, each 1H), 6.99 (s, 1H); EI-MS m/z (relative intensity) 401 (M⁺, 17), 209 (30), 192 (30), 179 (100). Anal. Calcd for C, 65.82; H, 6.78; N, 3.49. Found: C, 65.68; H, 6.81; N, 3.36.

Muraminol (21a) and 7-Methyl-9,14-dihydroxy-2,3,10-trimethoxy-5,6,7,8,13,14-hexahydrodibenz[c,g]azecine (23). To a stirred mixture of LiAlH₄ (188 mg, 4.95 mmol) in dry THF (14 mL) at rt was added dropwise a solution of dibenz[c,g]azecine-8,-14-dione **20a** (215 mg, 0.45 mmol) in dry THF (9 mL). After the mixture was refluxed for 20 h, water (20 mL) was added dropwise to quench LiAlH₄. The resulting mixture was extracted with CH₂-Cl₂ (3 × 20 mL), washed with water (20 mL) containing Rochelle salt (2 g) and water (2 × 20 mL), and dried (Na₂SO₄). The CH₂Cl₂ layer was concentrated to give a residue (129 mg) which was purified by preparative TLC with alumina developed with 0.5% MeOH–CH₂Cl₂. A band with $R_f 0.5-0.7$ afforded muraminol (**21a**), mp 178–179 °C (THF–Et₂O) (lit.¹⁴ mp 175–176 °C), as colorless crystals (29 mg, 17%), whose spectral data were identical with those previously reported by Rönsch.¹⁴ A band with $R_f 0.3-0.5$ gave **23**, mp 145–148 °C (CHCl₃), as colorless crystals (30 mg, 18%): IR (CHCl₃) 3514 cm⁻¹; ¹H NMR δ 2.33 (s, 3H), 2.56–2.59 (m, 2H), 2.93–3.01 (m, 2H), 3.14 (m, 2H), 3.73, 4.00 (AB type, J = 14.2Hz, each 1H), 3.82 (s, 3H), 3.82 (s, 3H), 3.91 (s, 3H), 5.60 (br, 1H), 6.45 (s, 1H), 6.56 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 8.2 Hz, 1H), 7.03 (s, 1H); EI-MS m/z (relative intensity) 373 (M⁺, 35), 224 (23), 206 (44), 194 (100), 179 (37), 151 (66). Anal. Calcd for C₂₁H₂₇NO₅: C, 67.54; H, 7.29; N, 3.75. Found: C, 67.46; H, 7.08; N, 3.58.

Muramine (1a). According to Rönsch's method,¹⁴ muraminol (**21a**, 25 mg, 0.064 mmol) was treated with PCC (28 mg, 0.13 mmol) and AcONa (2.8 mg, 0.03 mmol) in CH₂Cl₂ (3.2 mL) at rt for 2 h and purified by preparative TLC with alumina developed with 1% MeOH–CH₂Cl₂ to afford muramine (**1a**), mp 177–178 °C (acetone) (lit.¹⁴ mp 176–177 °C), as colorless crystals (17.4 mg, 71%, R_f 0.4), whose spectral data were identical with those previously reported by Rönsch.¹⁴

Supporting Information Available: Experimental procedures and characterization data for compounds 7–10 and 13–16, as well as ¹H NMR spectra for compounds 1a,d, 7–10, 13–17a,d, and 19a,d–23. This material is available free of charge via the Internet at http://pubs.acs.org.

JO071038Y